Основные обозначения	9
Часть I. Функции одной переменной	
Глава 1. Вещественные числа. Счётные и несчётные множества	13
§ 1.1. Дедекиндовы сечения	13
§ 1.2. Десятичная запись вещественного числа	15
§ 1.3. Некоторые неравенства	16
§ 1.4. Отображения множеств	17
§ 1.5. Счётные и несчётные множества	17
§ 1.6. Теорема Кантора—Бернштейна	21
§ 1.7. Решения задач	22
Глава 2. Предел последовательности	29
§ 2.1. Свойства пределов	29
§ 2.2. Возрастающие последовательности. Теорема Вейерштрасса.	31
§ 2.3. Последовательности Коши	32
§ 2.4. Вычисление некоторых пределов	34
§ 2.5. Число е	36
§ 2.6. Верхний и нижний пределы	38
§ 2.7. Теорема Тёплица	40
§ 2.8. Решения задач	41
Глава 3. Непрерывные функции	51
§ 3.1. Предел функции	51
§ 3.2. Непрерывность	53
§ 3.3. Теорема о промежуточном значении	55
§3.4. Свойства функций, непрерывных на отрезке	55
§ 3.5. Логарифм и показательная функция	56
§3.6. Гиперболические функции	58
§ 3.7. Равномерная непрерывность. Равномерная сходимость	59
§ 3.8. Липшицевы функции и теорема о неподвижной точке	62
§3.9. Выпуклые функции	63
§ 3.10. Функции ограниченной вариации	65
§ 3.11. Решения задач	66
Глава 4. Топология вещественных чисел	79
§ 4.1. Открытые и замкнутые множества	79
842. Компактные множества	82

§ 4.3. Связные множества	85
§ 4.4. Всюду плотные множества	87
§ 4.5. Совершенные множества	88
§ 4.6. Полунепрерывные функции	90
§ 4.7. Теорема Бэра	91
§ 4.8. Предел по фильтру	92
§ 4.9. Решения задач	93
Глава 5. Дифференцируемые функции	102
§ 5.1. Определение производной	102
§5.2. Производные элементарных функций	104
§5.3. Производная многочлена и кратные корни	105
§ 5.4. Касательная и нормаль	106
§ 5.5. Функции, дифференцируемые на отрезке	107
§5.6. Неравенства	109
§5.7. Правило Лопиталя	110
§5.8. Алгебраические и трансцендентные функции	111
§ 5.9. Формула Тейлора	111
§5.10. Равномерная сходимость дифференцируемых функций	114
§5.11. Промежуточные значения производной	115
§5.12. Многочлены Чебышёва	116
§5.13. Интерполяционные многочлены Лагранжа и Эрмита	118
§5.14. Формула Фаа-ди-Бруно	120
§ 5.15. Решения задач	122
Глава 6. Интегрирование	134
§ 6.1. Неопределённый интеграл	134
	135
§ 6.3. Интеграл Римана	140
§ 6.4. Теорема о среднем	142
§ 6.5. Формула Ньютона—Лейбница	143
§ 6.6. Формула замены переменной в определённом интеграле	144
§ 6.7. Остаточный член в интегральной форме	145
§ 6.8. Вычисление определённых интегралов	146
	147
§ 6.10. Вычисление объёмов	147
§ 6.11. Длина кривой	148
	149
§ 6.13. Некоторые применения интегралов	151
§ 6.14. Несобственные интегралы	152
§ 6.15. Равномерная сходимость интегрируемых функций	153
	156
§ 6.17. Среднее значение длины проекции	161
§ 6.18. Преобразование Лежандра	163
§ 6.19. Среднее арифметико-геометрическое	164

§ 6.20. Прямая как дифференцируемое многообразие	
Глава 7. Ряды	
§ 7.1. Ряды с положительными членами	
	188
	189
	191
	193
-	195
§ 7.7. Ряд для логарифма	
§ 7.8. Бином Ньютона	
§ 7.9. Ряды для числа π	
§ 7.10. Производящие функции 2	
§ 7.11. Двойные ряды	
§ 7.11. двоиные ряды	
§ 7.13. Экспонента в комплексной области	
§ 7.14. Степенные ряды в комплексной области	
§ 7.14. Степенные ряды в комплексной области	
§ 7.16. Бесконечные произведения	
§ 7.17. Эйлеровы разложения тригонометрических функций 2	
§ 7.18. Решения задач	
Глава 8. Мера Лебега. Интеграл Лебега	
	26
§ 8.1. Множества меры нуль	
§ 8.2. Критерий Лебега интегрируемости по Риману 2	237
§8.2. Критерий Лебега интегрируемости по Риману	237 239
§ 8.2. Критерий Лебега интегрируемости по Риману	237 239 245
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2	237 239 245 250
§ 8.2. Критерий Лебега интегрируемости по Риману	237 239 245 250
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2	237 239 245 250
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2	237 239 245 250 251
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть ІІ. Функции многих переменных Глава 9. Функции многих переменных	237 239 245 250 251
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных § 9.1. Топология пространства \mathbb{R}^n 2	237 245 250 251 251
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных 2 § 9.1. Топология пространства \mathbb{R}^n 2 § 9.2. Дифференциал 2	237 239 245 250 251 256 256 257
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных § 9.1. Топология пространства \mathbb{R}^n 2	237 239 245 250 251 256 257 265
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных 2 § 9.1. Топология пространства \mathbb{R}^n 2 § 9.2. Дифференциал 2 § 9.3. Теорема о среднем значении 2	237 239 245 250 251 256 257 265 267
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных § 9.1. Топология пространства \mathbb{R}^n 2 § 9.2. Дифференциал 2 § 9.3. Теорема о среднем значении 2 § 9.4. Формула Тейлора 2	237 239 245 250 251 256 257 265 267 270
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных 2 § 9.1. Топология пространства \mathbb{R}^n 2 § 9.2. Дифференциал 2 § 9.3. Теорема о среднем значении 2 § 9.4. Формула Тейлора 2 § 9.5. Метод множителей Лагранжа 2	237 239 245 250 251 255 265 267 270 274
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных Е § 9.1. Топология пространства \mathbb{R}^n 2 § 9.2. Дифференциал 2 § 9.3. Теорема о среднем значении 2 § 9.4. Формула Тейлора 2 § 9.5. Метод множителей Лагранжа 2 § 9.6. Лемма Адамара 2	237 239 245 250 251 256 257 265 267 274
§ 8.2. Критерий Лебега интегрируемости по Риману 2 § 8.3. Мера Жордана и мера Лебега на прямой 2 § 8.4. Интеграл Лебега на прямой 2 § 8.5. Интеграл Стилтьеса 2 § 8.6. Решения задач 2 Часть II. Функции многих переменных Глава 9. Функции многих переменных Бана 9. Функции многих переменных 2 § 9.1. Топология пространства ℝ ⁿ 2 § 9.2. Дифференциал 2 § 9.3. Теорема о среднем значении 2 § 9.4. Формула Тейлора 2 § 9.5. Метод множителей Лагранжа 2 § 9.6. Лемма Адамара 2 § 9.7. Решения задач 2	237 239 245 250 251 251 256 257 274 274 83

§ 10.3. Сжимающие отображения	287
§ 10.4. Уравнение касательной плоскости	289
$\S 10.5$. Метод множителей Лагранжа — 2	290
§ 10.6. Отображения постоянного ранга	292
§ 10.7. Якобиан и функциональная зависимость	294
§ 10.8. Локальное разложение диффеоморфизма	295
§ 10.9. Решения задач	297
Глава 11. Кратные интегралы	298
§ 11.1. Повторный интеграл	298
§ 11.2. Дифференцирование под знаком интеграла	298
§ 11.3. Изменение порядка интегрирования	300
§ 11.4. Равномерно сходящиеся интегралы	302
§ 11.5. Кратный интеграл	307
§ 11.6. Выражение кратного интеграла через повторный	
§ 11.7. Криволинейные и поверхностные интегралы	312
§ 11.8. Замена переменных в кратном интеграле	
§11.9. Сферические координаты	
§ 11.10. Инвариантное интегрирование на пространстве прямы:	
§ 11.11. Решения задач	325
Глава 12. Анализ на многообразиях	327
§ 12.1. Определение и основные свойства	327
§ 12.2. Касательное пространство	
$\S 12.3$. Метод множителей Лагранжа — 3	334
\S 12.4. Дифференциальные формы в \mathbb{R}^n	335
§ 12.5. Разбиение единицы	343
§ 12.6. Дифференциальные формы на многообразиях	
§ 12.7. Интегрирование на многообразиях	
§ 12.8. Степень отображения	
§ 12.9. Функции Морса	
§ 12.10. Решения задач	361
Часть III. Дополнительные главы	
Глава 13. Специальные функции	367
§ 13.1. Определения гамма-функции	367
§ 13.2. Свойства гамма-функции	
§ 13.3. Бета-функция	
§ 13.4. Интеграл Дирихле	
§ 13.5. Дробное интегрирование и дифференцирование	
§ 13.6. Функции Бесселя	
§ 13.7. Гипергеометрический ряд	
§ 13.8. Решения задач	

Глава 14.	. Ряды Фурье. Интеграл Фурье	387
§ 14.1.	Тригонометрические многочлены	387
	Разложения по ортогональным системам функций	
§ 14.3.	Ядро Дирихле и ядро Фейера	391
§ 14.4.	Теорема Фейера и сходимость рядов Фурье	393
	Равенство Парсеваля	
	Теорема Вейерштрасса	
	Интеграл Фурье	
§ 14.8.	Решения задач	406
Глава 15.	. Расходящиеся ряды	407
§ 15.1.	Асимптотические разложения	407
	Формула Эйлера — Маклорена	
§ 15.3.	Суммирование расходящихся рядов	412
Глава 16.	. Дополнительные темы классического анализа	415
	Непрерывные дроби	
	Теорема Лиувилля об элементарных интегралах	
	Условно сходящиеся ряды векторов	
	Решения задач	
Глава 17.	Квантовый анализ	444
§ 17.1.	<i>q</i> -Факториал и <i>q</i> -биномиальный коэффициент	444
	<i>q</i> -Производная	
§ 17.3.	q-Формула Тейлора для многочленов	446
	Два q -интеграла	
§ 17.5.	Две <i>q</i> -экспоненты	449
	Исчисление конечных разностей	
§ 17.7.	Решения задач	453
Глава 18.	. р-Адический анализ	455
§ 18.1.	Поле p -адических чисел \mathbb{Q}_p	455
	Топология пространства \mathbb{Q}_p	
	Дифференцирование	
	Некоторые элементарные функции	
§ 18.5.	Решения задач	460
Предмет	ный указатель	467
Vизээтел	ь имён	478

Глава 5

Дифференцируемые функции

§ 5.1. Определение производной

Производная функции f(x) в точке x_0 — это предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \frac{df}{dx}(x_0).$$

Если этот предел существует, то говорят, что функция f(x) дифференцируема в точке x_0 .

Для функции f(x), определённой на отрезке [a,b], производные в точках a и b определяются как односторонние пределы.

Производную функции g(x) = f'(x) называют второй производной или производной второго порядка функции f(x) и обозначают f''(x). Аналогично определяется производная третьего порядка f'''(x) и т. д. Производную n-го порядка обозначают $f^{(n)}(x) = \frac{d^n f}{dx^n}(x)$.

Теорема 5.1. Пусть функция f(x) дифференцируема в точке x_0 , а прямая, проходящая через точки (x_0, y_0) и (x_1, y_1) , где $y_0 = f(x_0)$ и $y_1 = f(x_1)$, задаётся уравнением $y - y_0 = k(x_1)(x - x_0)$. Тогда

$$\lim_{x_1 \to x_0} k(x_1) = f'(x_0).$$

Доказательство. Рассматриваемая прямая задаётся уравнением $y-y_0=\frac{f(x_1)-f(x_0)}{x_1-x_0}(x-x_0)$, поэтому $k(x_1)=\frac{f(x_1)-f(x_0)}{x_1-x_0}$. Непосредственно из определения производной видно, что $\lim_{x_1\to x_0}k(x_1)==f'(x_0)$.

Прямую $y-f(x_0)=f'(x_0)(x-x_0)$ называют касательной к графику y=f(x) в точке $(x_0,f(x_0))$.

Теорема 5.2. Если функция f(x) дифференцируема в точке x_0 , то она непрерывна в этой точке.

Доказательство. Запишем тождество

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0).$$

П

При этом
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$
 и $\lim_{x \to x_0} (x - x_0) = 0$. Поэтому
$$\lim_{x \to x_0} (f(x) - f(x_0)) = f'(x_0) \cdot 0 = 0.$$

Это означает, что функция f(x) непрерывна в точке x_0 .

Пример 5.1. Функция f(x) = |x| всюду непрерывна, но не дифференцируема в точке x = 0.

Теорема 5.3. Если функции f(x) и g(x) дифференцируемы в точке x_0 , то:

- a) $(f+g)'(x_0) = f'(x_0) + g'(x_0)$;
- 6) $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$, $z \partial e(fg)(x) = f(x)g(x)$;

B)
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$
, $ecnu\ g(x_0) \neq 0$.

Доказательство. а) Непосредственно следует из свойств предела суммы двух функций.

б) Пусть h(x) = f(x)g(x). Тогда

$$h(x) - h(x_0) = f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0)).$$

Поделим обе части этого равенства на $x - x_0$ и заметим, что $f(x) \to f(x_0)$ при $x \to x_0$.

в) Пусть h(x) = f(x)/g(x). Тогда

$$\frac{h(x) - h(x_0)}{x - x_0} = \frac{1}{g(x)g(x_0)} \left(g(x_0) \frac{f(x) - f(x_0)}{x - x_0} - f(x_0) \frac{g(x) - g(x_0)}{x - x_0} \right).$$

Устремляя x к x_0 , получаем требуемое.

Композицией функций f и g называют функцию $g \circ f(x) = g(f(x))$.

Теорема 5.4. Пусть функция f дифференцируема в точке x_0 , а функция g дифференцируема в точке $y_0 = f(x_0)$. Предположим, что y точки x_0 есть такая окрестность $U(x_0)$, что если x принадлежит $U(x_0)$ и $x \neq x_0$, то $f(x) \neq f(x_0)$. Тогда функция $g \circ f$ дифференцируема в точке x_0 и $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$.

Доказательство. Тождество

$$\frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \frac{g \circ f(x) - g \circ f(x_0)}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0}$$

показывает, что функция $g \circ f$ дифференцируема в точке x_0 и

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Доказательство теоремы 5.4 получилось столь простым из-за предположения о том, что у точки x_0 есть такая окрестность $U(x_0)$, что если x принадлежит $U(x_0)$ и $x \neq x_0$, то $f(x) \neq f(x_0)$. В задаче 5.1 это предположение заменено другим.

Задача 5.1. Пусть функция f непрерывна на отрезке [a,b], дифференцируема в точке $x \in (a,b)$, а функция g определена на некотором отрезке I, содержащем все значения функции f и дифференцируема в точке y = f(x). Докажите, что функция h(t) = g(f(t)) дифференцируема в точке x и h'(x) = g'(f(x))f'(x).

Пусть функция f(x) строго возрастает на отрезке [a,b]. Тогда каждой точке y отрезка [f(a),f(b)] соответствует единственная точка x отрезка [a,b], для которой y=f(x). Поэтому можно определить обратную функцию g(y)=x.

Теорема 5.5. Пусть $f'(x_0) \neq 0$, g(y) — обратная κ f(x) функция. Тогда если $y_0 = f(x_0)$, то $g'(y_0) = \frac{1}{f'(x_0)}$.

Доказательство. Достаточно заметить, что

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{y - y_0}{f(y) - f(y_0)}.$$

§ 5.2. Производные элементарных функций

Вычисление производных элементарных функций мы оставим в качестве задач.

Задача 5.2. Докажите, что $(x^n)' = nx^{n-1}$ для любого натурального n.

Задача 5.3. Докажите, что $(x^a)' = ax^{a-1}$ для любого вещественного a и положительного x.

Задача 5.4. Докажите, что $(\sin x)' = \cos x$ и $(\cos x)' = -\sin x$.

Задача 5.5. Докажите, что $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$ и $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$ на области определения.

Задача 5.6. Докажите, что $(a^x)' = a^x \ln a$ для a > 0.

Задача 5.7. Докажите, что $(\log_a x)' = \frac{1}{x \ln a}$.

Задача 5.8. Докажите, что
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 и $(\arctan x)' = \frac{1}{1+x^2}$.

Несложно проверить следующие формулы для производных гиперболических функций:

$$(\sinh x)' = \cosh x$$
, $(\cosh x)' = \sinh x$, $(\th x)' = \frac{1}{\cosh^2 x}$, $(\coth x)' = -\frac{1}{\sinh^2 x}$.

Теперь приведём несколько задач, связанных с применением производных элементарных функций.

Задача 5.9. Пусть функции u(x) и v(x) дифференцируемы и функция u(x) положительна. Докажите, что функция $u^v = u(x)^{v(x)}$ дифференцируема, и найдите её производную.

Задача 5.10. Вычислите производную функции $f(x) = x^{\sin x}$ (для x > 0).

Задача 5.11. Пусть $0 < a < \pi/2$ — постоянный угол. Вычислите производную функции $f(x) = \cos^x a - \sin^x a$.

§ 5.3. Производная многочлена и кратные корни

Корень x_0 многочлена f(x) называют *кратным*, если $f(x) = (x - x_0)^2 g(x)$, где g(x) — некоторый многочлен.

Теорема 5.6. Многочлен f(x) степени $n \ge 2$ имеет кратный корень тогда и только тогда, когда многочлены f(x) и f'(x) имеют общий корень.

Доказательство. Предположим, что $f(x) = (x - x_0)^m g(x)$, где $m \geqslant 2$. Тогда многочлен

$$f'(x) = m(x - x_0)^{m-1}g(x) + (x - x_0)^m g'(x)$$

имеет корень x_0 .

Предположим, что $f(x)=(x-x_0)g(x)$, причём $g(x_0)\neq 0$. Тогда $f'(x)=g(x)+(x-x_0)g'(x)$, поэтому $f'(x_0)=g(x_0)\neq 0$. Таким образом, если все корни многочлена f(x) имеют кратность 1, то они не являются корнями многочлена f'(x).

Задача 5.12. Докажите, что многочлен

$$f_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

не имеет кратных корней.

Задача 5.13. Пусть P(x) — многочлен с целыми коэффициентами. Докажите, что все коэффициенты его n-й производной $P^{(n)}(x)$ делятся на n! для любого натурального n.

Задача 5.14. Докажите, что среднее арифметическое корней многочлена степени n, имеющего n различных корней, равно среднему арифметическому корней его производной.

Задача 5.15. Пусть f и g — многочлены степени n. Докажите, что $fg^{(n)}-f'g^{(n-1)}+f''g^{(n-2)}-f'''g^{(n-3)}+\ldots+(-1)^nf^{(n)}g$ — константа.

Задача 5.16. Пусть p и q — вещественные числа. Сколько вещественных корней имеет кубическое уравнение $x^3+px+q=0$ в зависимости от знаков числа p и дискриминанта $D=\frac{q^2}{4}+\frac{p^3}{27}$?

Задача 5.17. Пусть $f(x) = (x - x_1)...(x - x_n)$, где числа $x_1,...,x_n$ попарно различны и отличны от нуля. Докажите, что

$$\sum_{i=1}^{n} \frac{x_{i}^{k}}{f'(x_{i})} = \begin{cases} 0 & \text{при } 0 \leqslant k \leqslant n-2; \\ 1 & \text{при } k=n-1. \end{cases}$$

Задача 5.18. Пусть $P(x)=(x-x_1)...(x-x_n)$, где $x_1,...,x_n$ — вещественные числа. Докажите, что $(P'(x))^2\geqslant P(x)P''(x)$ для всех вещественных x.

Задача 5.19. Докажите, что любой многочлен можно представить в виде разности двух монотонно возрастающих многочленов.

Задача 5.20. Докажите, что многочлен

$$P(x) = a_0 + a_1 x^{k_1} + a_2 x^{k_2} + \dots + a_n x^{k_n}$$

имеет не более n положительных корней.

Задача 5.21*. Функция f(x) бесконечно дифференцируема на всей прямой, причём в каждой точке производная некоторого порядка равна нулю. Докажите, что f(x) — многочлен.

§ 5.4. Касательная и нормаль

Касательная в точке $(x_0, f(x_0))$ к графику y = f(x) дифференцируемой функции задаётся уравнением

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Производная $f'(x_0)$ — это тангенс угла наклона касательной.

Секущая, проходящая через точки $(x_0,f(x_0))$ и $(x_1,f(x_1))$ задаётся уравнением

$$y = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0),$$

поэтому касательная — предельное положение секущей при $x_1 \rightarrow x_0$.

Задача 5.22. Касательная к кривой $y=e^x$ в точке (x_0,y_0) пересекает ось Ox в точке $(x_1,0)$. Докажите, что разность x_1-x_0 одна и та же для всех точек кривой.

Задача 5.23. На параболе, ось которой параллельна оси Oy, взяты точки A_1 , A_2 и A_3 . Пусть k_1 — тангенс угла наклона касательной в точке A_1 , k_{ij} — тангенс угла наклона секущей A_iA_j . Докажите, что $k_1=k_{12}+k_{13}-k_{23}$.

Нормаль к кривой y = f(x) в точке (x_0, y_0) — это прямая, проходящая через точку (x_0, y_0) перпендикулярно касательной в этой точке.

Задача 5.24. Докажите, что нормаль к кривой y=f(x) в точке (x_0,y_0) задаётся уравнением

$$-f'(x_0)(y-y_0) = x-x_0.$$

Задача 5.25. Нормаль к параболе $y=x^2$ в точке (x_0,y_0) пересекает ось Oy в точке $(0,y_1)$. Докажите, что разность y_1-y_0 постоянна для всех точек параболы.

§ 5.5. Функции, дифференцируемые на отрезке

Значение функции, которое является наибольшим или наименьшим, называют *экстремальным*. Точку, в которой функция принимает экстремальное значение, называют *точкой экстремума*.

Теорема 5.7 (Ферма). Пусть функция f(x) определена на отрезке [a,b], внутренняя точка x_0 этого отрезка — точка экстремума и в точке x_0 существует производная. Тогда $f'(x_0) = 0$.

Доказательство. Пусть для определённости $f(x_0) \le f(x)$ для всех x из отрезка [a,b]. Рассмотрим односторонние пределы

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \quad \text{in} \quad \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

В обоих пределах числитель неотрицателен. При этом в первом пределе знаменатель положителен, а во втором отрицателен. Значит, первый предел неотрицателен, а второй неположителен. Но оба предела равны $f'(x_0)$.

Историческое замечание. Общий метод нахождения максимумов и минимумов Пьер Ферма (1601–1665) разработал в 1629 году.

Теорема 5.8 (Ролль). Пусть функция f(x) дифференцируема на отрезке [a,b], причём f(a)=f(b). Тогда существует внутренняя точка x_0 этого отрезка, для которой $f'(x_0)=0$.

Доказательство. Функция f(x) непрерывна на отрезке [a,b], поэтому по теореме Вейерштрасса (теорема 3.7) среди её значений есть наибольшее M и наименьшее m. Если M=m, то функция f(x) постоянна, поэтому в качестве x_0 можно взять любую внутреннюю точку отрезка. Если же M>m, то одно из этих двух значений достигается не в конце отрезка, потому что по условию f(a)=f(b). Значит, в некоторой внутренней точке x_0 отрезка [a,b] функция f(x) достигает наибольшего или наименьшего значения, поэтому по теореме Ферма (теорема 5.7) $f'(x_0)=0$.

Историческое замечание. Мишель Ролль (1652–1719) опубликовал теорему 5.8 для многочленов в 1691 году. Его подход был чисто алгебраический, он был убеждён, что методы анализа бесконечно малых неизбежно приведут к ошибкам.

Теорема 5.9 (Лагранж). Пусть функция f(x) дифференцируема на отрезке [a,b]. Тогда существует внутренняя точка x_0 этого отрезка, для которой

 $f'(x_0) = \frac{f(a) - f(b)}{a - b}$.

Теорему Лагранжа, записанную в виде $f(b) - f(a) = f'(x_0)(b-a)$, часто называют формулой конечных приращений или теоремой о среднем значении.

Доказательство. Рассмотрим вспомогательную функцию

$$F(x) = f(x) - \frac{f(a) - f(b)}{a - b}(x - a).$$

Эта функция дифференцируема на отрезке [a,b] и F(a)=F(b)=f(a). Поэтому к функции F(x) можно применить теорему Ролля (теорема 5.8). В результате получим, что существует внутренняя точка x_0 отрезка [a,b], для которой $F'(x_0)=0$, т. е. $f'(x_0)-\frac{f(a)-f(b)}{a-b}=0$. \square

Историческое замечание. Жозеф Луи Лагранж (1736–1813) получил формулу конечных приращений в 1797 году как частный случай остаточного члена для формулы Тейлора.

Задача 5.26. Функция f(x) дифференцируема на отрезке [a,b], причём f'(x) = 0 для всех точек x отрезка [a,b]. Докажите, что функция f(x) постоянна на отрезке [a,b].

Задача 5.27. Функция f(x) дифференцируема на отрезке [a,b].

- а) Докажите, что эта функция неубывающая (на этом отрезке) тогда и только тогда, когда $f'(x)\geqslant 0$ для любой точки $x\in (a,b)$.
- б) Докажите, что если $f'(x) \ge 0$ для любой точки $x \in (a,b)$ и не существует отрезка [p,q], содержащегося в [a,b], во всех точках которого f' обращается в нуль, то функция f(x) строго возрастающая.

Задача 5.28. Функции f(x) и g(x) дифференцируемы на отрезке [a,b]. Докажите, что если f(a)=g(a) и f'(x)>g'(x) для любой точки x интервала (a,b), то f(x)>g(x) для любой точки x интервала (a,b).

Задача 5.29. Докажите, что если x>0, то $\cos x>1-\frac{x^2}{2}$ и $\sin x>$ $>x-\frac{x^3}{6}$.

Задача 5.30. Докажите, что если $0 < x < \frac{\pi}{2}$, то tg $x > x + \frac{x^3}{3}$.

Замечание. Доказательства неравенств из задач 5.29 и 5.30 основаны на том, что из неравенства для производных следует неравенство для функций. Другими словами, из неравенства для функций следует неравенство для первообразных (интегралов). Подход с применением интегралов (по сути дела, эквивалентный) в некотором смысле более естествен: чтобы получить неравенство, нужно вычислить интеграл. Поэтому здесь мы привели только два неравенства. Более подробно этот метод доказательства неравенств обсуждается в § 6.13.

Задача 5.31. а) Пусть $0 < \alpha < 1$ и $x \geqslant 0$. Докажите, что $x^{\alpha} - \alpha x \leqslant \leqslant 1 - \alpha$.

б) Пусть $a,\,b,\,p$ и q — положительные числа, причём $\frac{1}{p}+\frac{1}{q}=1.$ Докажите, что $ab\leqslant \frac{1}{p}a^p+\frac{1}{q}b^q.$

Задача 5.32. Функция f(x) дифференцируема на отрезке [a,b], причём f''(x) > 0 для всех $x \in (a,b)$. Докажите, что эта функция выпуклая.

Задача 5.33. Функция f дифференцируема на отрезке [a,b], причём для некоторой константы c для всех $x\in [a,b]$ выполняется неравенство $|f'(x)|\leqslant c|f(x)|$. Докажите, что если $f(x_0)=0$ для некоторой точки $x\in [a,b]$, то $f(x)\equiv 0$ на [a,b].

Теорема 5.10 (Коши). Пусть функции f(x) и g(x) дифференцируемы на отрезке [a,b], причём производная g'(x) не обращается в нуль во внутренних точках этого отрезка. Тогда существует внутренняя точка x_0 отрезка [a,b], для которой

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}.$$

Доказательство. Рассмотрим вспомогательную функцию

$$F(x) = (f(b) - f(a))(g(x) - g(a)) - (f(x) - f(a))(g(b) - g(a)).$$

Ясно, что

$$F'(x) = (f(b) - f(a))g'(x) - f'(x)(g(b) - g(a))$$

и F(a) = F(b) = 0. Поэтому к функции F(x) можно применить теорему Ролля (теорема 5.8). В результате получим, что существует внутренняя точка x_0 , для которой

$$(f(b) - f(a))g'(x_0) - f'(x_0)(g(b) - g(a)) = 0. (5.1)$$

По условию $g'(x_0) \neq 0$. Легко также видеть, что $g(b) - g(a) \neq 0$, поскольку иначе по теореме Ролля нашлась бы внутренняя точка x_1 , для которой $g'(x_1) = 0$. Поэтому равенство (5.1) можно поделить на $g'(x_0)(g(b) - g(a))$ и получить требуемое.

§ 5.6. Неравенства

Приведём ещё несколько задач на доказательство неравенств с помощью производных.

Задача 5.34. Докажите, что если $0<\alpha<\beta<\frac{\pi}{2}$, то $\alpha\sin\beta<\beta\sin\alpha$ и $\alpha\lg\beta>\beta\lg\alpha$.

Задача 5.35. Докажите, что если $0 < \alpha < \frac{\pi}{2}$, то $2\sin\alpha + \tan\alpha > 3\alpha$. **Задача 5.36.** а) Докажите, что $e^x > 1 + x$ для любого $x \neq 0$.

б) Докажите, что $\frac{1}{n+1} < \ln \frac{n+1}{n} < \frac{1}{n}$ для любого натурального n. **Задача 5.37.** Пусть x > 0, $x \ne 1$. Докажите, что: a) $\ln x < x - 1$;

6) $\ln x > \frac{x-1}{x}$.

Задача 5.38. Докажите, что $\ln x < n(x^{1/n} - 1) < x^{1/n} \ln x$ для любого положительного числа $x \neq 1$.

Задача 5.39. Докажите, что $\lim_{n\to\infty} n\ln\left(1+\frac{x}{n}\right)=x$ при x>0. **Задача 5.40.** Докажите, что $e^x>x^e$ для любого положительного

 $x \neq e$.

Задача 5.41. Пусть a и b — положительные числа. Докажите, что $b \cdot 2^a + a \cdot 2^{-b} \geqslant a + b$.

Задача 5.42. Пусть a > b > 0. Докажите, что

$$\sqrt{ab} < \frac{a-b}{\ln a - \ln b} < \frac{a+b}{2}$$
.

Задача 5.43*. Докажите, что

$$\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \dots + \frac{1}{n}\sin nx > 0$$

при $0 < x < \pi$.

Задача 5.44. Пусть $0 < x < \pi/4$. Докажите, что

$$(\cos x)^{\cos^2 x} > (\sin x)^{\sin^2 x}$$
 и $(\cos x)^{\cos^4 x} < (\sin x)^{\sin^4 x}$.

Задача 5.45. Докажите, что если x > -1 и $x \neq 0$, то

$$\frac{2|x|}{2+x} < |\ln(1+x)| < \frac{|x|}{\sqrt{1+x}}.$$

§ 5.7. Правило Лопиталя

Правило Лопиталя позволяет вычислять некоторые пределы с помощью производной.

Теорема 5.11 (правило Лопиталя). Пусть функции f(x) и g(x)удовлетворяют условиям теоремы Коши (теорема 5.10) и, кроме того, f(a) = g(a) = 0. Тогда если $\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A$, то $\lim_{x \to a+0} \frac{f(x)}{g(x)} = A$.

Доказательство. Фиксируем точку $x \in (a, b]$ и применим теорему Коши к отрезку [a,x]. В результате получим, что внутри этого отрезка есть точка x_1 , для которой

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(x_1)}{g'(x_1)}.$$

Если $x \to a$, то $x_1 \to a$. Из этого следует требуемое.

Историческое замечание. Гийом де Лопиталь (1661-1704) привёл правило нахождения пределов функций в своём учебнике анализа, изданном в 1696 году. Но этот учебник составлен на основе лекций, которые ему читал Иоганн Бернулли (1667-1748). В 1692 году Бернулли уже знал это правило.

Задача 5.46. Вычислите с помощью правила Лопиталя предел $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

Задача 5.47. Вычислите предел $\lim_{x \to a} \frac{a^x - x^a}{x - a}$.

Задача 5.48. Вычислите предел $\lim_{x\to 0} \frac{\operatorname{tg} x - x}{x - \sin x}$.

Задача 5.49. Пусть f(x) и g(x) — многочлены, не имеющие общих корней, причём $\deg f < \deg g$ и многочлен g(x) не имеет кратных корней. Докажите, что

$$\frac{f(x)}{g(x)} = \sum_{i=1}^{n} \frac{A_i}{x - a_i},$$

где $a_1, ..., a_n$ — корни многочлена g и $A_i = f(a_i)/g'(a_i)$.

§5.8. Алгебраические и трансцендентные функции

Функцию f(x) называют алгебраической, если существуют многочлены $P_0(x),...,P_n(x)$, для которых

$$P_0(x)(f(x))^n + P_1(x)(f(x))^{n-1} + \dots + P_n(x) = 0,$$

причём многочлен $P_0(x)$ не равен тождественно нулю. В противном случае функцию f(x) называют mpancuendenmnoй.

Задача 5.50. Докажите, что функция $f(x) = \sin x$ трансцендентная.

Задача 5.51. Докажите, что функция $f(x) = e^x$ трансцендентная.

§ 5.9. Формула Тейлора

Проще всего формула Тейлора выглядит для многочленов; сформулируем соответствующее утверждение в виде задачи.

Задача 5.52. а) Пусть a — фиксированное число. Докажите, что любой многочлен $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ можно записать в виде

$$f(x) = A_0 + A_1(x-a) + A_2(x-a)^2 + \ldots + A_n(x-a)^n,$$
где A_0, A_1, \ldots, A_n — константы.

б) Докажите, что
$$A_0 = f(a), A_1 = f'(a), A_2 = \frac{f''(a)}{2!}, ..., A_n = \frac{f^{(n)}(a)}{n!}.$$

Теорема 5.12 (формула Тейлора). Пусть a — фиксированное число, f(x) — функция, имеющая производные до порядка n+1 включительно для любого x между a и b (для некоторого b). Тогда если число x заключено между a и b и

$$T(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n,$$

mo

$$f(x) - T(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x-a)^{n+1}$$

для некоторого θ между a и x.

Доказательство. Ясно, что T(a) = f(a). Далее,

Поэтому T'(a) = f'(a), T''(a) = f''(a), ..., $T^{(n)}(a) = f^{(n)}(a)$ и $T^{(n+1)}(x) = 0$.

Рассмотрим вспомогательную функцию $\varphi(x)=f(x)-T(x)$. Для неё $\varphi(a)=\varphi'(a)=\varphi''(a)=\dots=\varphi^{(n)}(a)=0$ и $\varphi^{(n+1)}(x)=f^{(n+1)}(x)$. Рассмотрим ещё вспомогательную функцию $\psi(x)=\frac{(x-a)^{n+1}}{(n+1)!}$. Для неё $\psi(a)=\psi'(a)=\psi''(a)=\dots=\psi^{(n)}(a)=0$ и $\psi^{(n+1)}(x)=1$. Более того, ни сама функция ψ , ни её производные до (n+1)-й включительно не обращаются в нуль в точках, отличных от a.

Фиксируем точку $x \neq a$. Из равенств $\varphi(a) = \psi(a) = 0$ следует, что $\frac{\varphi(x)}{\psi(x)} = \frac{\varphi(x) - \varphi(a)}{\psi(x) - \psi(a)}$. Поэтому по теореме Коши (теорема 5.10) существует точка x_1 между a и x, для которой $\frac{\varphi(x)}{\psi(x)} = \frac{\varphi'(x_1)}{\psi'(x_1)}$. Из равенств $\varphi'(a) = \psi'(a) = 0$ следует, что $\frac{\varphi'(x)}{\psi'(x)} = \frac{\varphi'(x) - \varphi'(a)}{\psi'(x) - \psi'(a)}$. Поэтому по теореме Коши существует точка x_2 между a и x_1 (а значит, между a и x), для которой $\frac{\varphi'(x_1)}{\psi'(x_1)} = \frac{\varphi''(x_2)}{\psi''(x_2)}$. Продолжая эти рассуждения, получаем

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi'(x_1)}{\psi'(x_1)} = \frac{\varphi''(x_2)}{\psi''(x_2)} = \dots = \frac{\varphi^{(n+1)}(x_{n+1})}{\psi^{(n+1)}(x_{n+1})},$$

где точка x_{n+1} лежит между a и x.

Напомним, что $\varphi^{(n+1)}(x) = f^{(n+1)}(x)$ и $\psi^{(n+1)}(x) = 1$. Пусть $\theta = x_{n+1}$. Тогда $\frac{\varphi(x)}{\psi(x)} = f^{(n+1)}(\theta)$, т. е. $f(x) - T(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!}(x-a)^{n+1}$.

Многочлен T(x) называют многочленом Тейлора порядка n функции f в точке a.

Разность f(x) - T(x) называют остаточным членом. Остаточный член вида $\frac{f^{(n+1)}(\theta)}{(n+1)!}(x-a)^{n+1}$ называют остаточным членом в форме Лагранжа.

Историческое замечание. Брук Тейлор (1685–1731) пришёл к представлению функций с помощью формулы Тейлора в 1715 году. Но Джеймс Грегори (1638-1675) уже знал эту формулу в 1671 году и получил разложения нескольких важных функций. Лагранж получил остаточный член в формуле Тейлора в 1797 году. Он первым оценил точность приближения функции суммой конечного числа членов ряда Тейлора.

Задача 5.53. a) Докажите, что модуль разности между sin x и

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

не превосходит $\frac{|x|^{2n+2}}{(2n+2)!}$.

б) Докажите, что модуль разности между $\cos x$ и

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$$

не превосходит $\frac{|x|^{2n+1}}{(2n+1)!}$.

в) Докажите, что модуль разности между e^x и

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

не превосходит $e^{x} \frac{|x|^{n+1}}{(n+1)!}$.

Замечание. Приводимые в задаче 5.53 следствия из формулы Тейлора можно получить и более простыми средствами. По этому поводу см. § 6.13.

Историческое замечание. Формулы

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad \text{if} \quad \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

предложил Исаак Ньютон (1643-1727) в 1669 году.

Задача 5.54. Докажите, что если (n+1)-я производная функции f тождественно равна нулю, то f — многочлен степени не выше п.

§ 5.10. Равномерная сходимость дифференцируемых функций

Начнём с двух задач.

Задача 5.55. Докажите, что поточечно сходящаяся последовательность функций, дифференцируемых на отрезке, может сходится к не дифференцируемой функции.

Задача 5.56. Пусть последовательность дифференцируемых функций f_n сходится на отрезке к дифференцируемой функции f. Докажите, что при этом последовательность $\{f_n'\}$ может не сходиться к f'.

Но при определённых условиях последовательность дифференцируемых функций сходится к дифференцируемой функции и при этом последовательность производных сходится к производной.

Теорема 5.13. Если последовательность непрерывно дифференцируемых функций f_n на интервале (a,b) сходится в некоторой точке x_0 , а последовательность их производных f_n' равномерно сходится на этом интервале, то последовательность функций f_n равномерно сходится на интервале к непрерывно дифференцируемой функции f, причём $f'(x) = \lim_{n \to \infty} f'(x)$ для всех $x \in (a,b)$.

причём $f'(x) = \lim_{n \to \infty} f'(x)$ для всех $x \in (a,b)$.

Доказательство. Фиксируем точку $c \in (a,b)$ и положим $g_n(x) = f_n'(c)$ при x = c и $g_n(x) = \frac{f_n(x) - f_n(c)}{x - c}$ при $x \neq c$. Тогда

$$f_n(x) = f_n(c) + (x - c)g_n(x)$$
 (5.2)

для всех $x \in (a,b)$. Покажем, что для любого c последовательность $\{g_n\}$ сходится равномерно на интервале (a,b). Пусть задано $\varepsilon > 0$. Согласно теореме о среднем значении (теорема 5.9) для точки $x \in (a,b), x \neq c$, можно выбрать точку ξ между x и c так, что

$$g_n(x) - g_m(x) = \frac{f_n(x) - f_m(x) - (f_n(c) - f_m(c))}{x - c} = f'_n(\xi) - f'_m(\xi).$$

Последовательность $\{f_n'\}$ сходится равномерно на (a,b), поэтому можно выбрать N так, что если $n,m\geqslant N$, то $|g_n(x)-g_m(x)|<\varepsilon$. Для x=c это неравенство тоже выполняется, поскольку $g_n(c)=f_n'(c)$. Равномерная сходимость последовательности $\{g_n\}$ доказана.

Докажем теперь, что последовательность $\{f_n\}$ сходится равномерно на интервале (a,b). Запишем равенство (5.2) для $c=x_0$:

$$f_n(x) = f_n(x_0) + (x - x_0)g_n(x).$$

Из этого равенства следует равномерная сходимость последовательности $\{f_n\}$, поскольку последовательность чисел $\{f_n(x_0)\}$ сходится

(по условию) и последовательность функций $\{g_n\}$ сходится равномерно.

Снова фиксируем точку $c \in (a,b)$ и положим $f(x) = \lim_{n \to \infty} f_n(x)$ и $g(x) = \lim_{n \to \infty} g_n(x)$. Требуется доказать, что

$$f'(c) = \lim_{n \to \infty} f'_n(c).$$
 (5.3)

Последовательность $\{g_n\}$ сходится равномерно, и каждая функция g_n непрерывна в точке c, поэтому функция g непрерывна в точке c. Кроме того, $g_n(c) = f_n'(c)$. Следовательно, правую часть равенства (5.3) можно записать в следующем виде:

$$\lim_{n\to\infty} f'_n(c) = \lim_{n\to\infty} g_n(c) = g(c) = \lim_{x\to c} g(x).$$

Ясно также, что

$$\frac{f(x) - f(c)}{x - c} = \lim_{n \to \infty} \frac{f_n(x) - f_n(c)}{x - c} = \lim_{n \to \infty} g_n(x) = g(x).$$

Поэтому левую часть равенства (5.3) можно записать в следующем виде:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} g(x).$$

§ 5.11. Промежуточные значения производной

Производная всюду дифференцируемой функции может не быть непрерывной. Рассмотрим, например, функцию $f(x)=x^2\sin\frac{1}{x}$ при $x\neq 0,\, f(0)=0.$ Если $x\neq 0,\, ext{то}$

$$f'(x) = 2x \sin \frac{1}{x} + x^2 \left(\frac{1}{x}\right)' \cos \frac{1}{x} = 2x \sin \frac{1}{x} - \cos \frac{1}{x}.$$

Для вычисления производной в нуле можно воспользоваться непосредственно определением производной. Ясно, что $\left|\frac{f(t)-f(0)}{t-0}\right|=$ $=\left|t\sin\frac{1}{t}\right|\leqslant|t|$ при $t\neq0$, поэтому f'(0)=0. Таким образом, функция f'(x) всюду определена, но в точке 0 она не непрерывна, поскольку функция $\cos\frac{1}{x}$ не имеет предела при $x\to0$.

Тем не менее, производная функции, дифференцируемой на отрезке, принимает все промежуточные значения.

Теорема 5.14 (Дарбу). Пусть функция f(x) дифференцируема на отрезке [a,b] и $f'(a) < \lambda < f'(b)$. Тогда $f'(x) = \lambda$ для некоторой точки $x \in (a,b)$.

Аналогичное утверждение верно и в том случае, когда f'(a) > f'(b).

Доказательство. Пусть точка c — середина отрезка [a,b]. Рассмотрим на отрезке [a,b] две непрерывные кусочно линейные функции $\alpha(t)$ и $\beta(t)$: если $a \le t \le c$, то $\alpha(t) = a$ и $\beta(t) = 2t - a$, а если $c \le t \le b$, то $\alpha(t) = 2t - b$ и $\beta(t) = b$ (рис. 5.1). Ясно, что при a < t < b

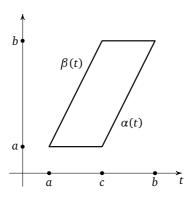


Рис. 5.1.

выполняются неравенства $a \le \alpha(t) < \beta(t) \le b$. Поэтому можно рассмотреть непрерывную функцию

$$g(t) = \frac{f(\beta(t)) - f(\alpha(t))}{\beta(t) - \alpha(t)}$$

на интервале (a,b). Ясно, что $g(t) \to f'(a)$ при $t \to a$ и $g(t) \to f'(b)$ при $t \to b$. Поэтому функцию g(t) можно доопределить до функции, непрерывной на отрезке [a,b], и из теоремы о промежуточном значении (теорема 3.5) следует, что на интервале (a,b) существует точка t_0 , для которой $g(t_0) = \lambda$, т. е.

$$\frac{f(\beta(t_0)) - f(\alpha(t_0))}{\beta(t_0) - \alpha(t_0)} = \lambda.$$

Поэтому по формуле конечных приращений (теорема 5.9) существует точка $x \in (\alpha(t_0), \beta(t_0))$, для которой $f'(x) = \lambda$.

Историческое замечание. Гастон Дарбу (1842–1917) доказал теорему 5.14 в 1875 году.

§ 5.12. Многочлены Чебышёва

Определение многочленов Чебышёва основано на том, что $\cos n\varphi$ полиномиально выражается через $\cos \varphi$, т. е. существует такой мно-